
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 174

Case-Study On Functional Minimum Storage Regenerating

Codes For Fault Tolerance Cloud Storage

Rishabh Anand

Manager, HCL Technologies Ltd –IOMC, India

Abstract: Cloud computing defined as “A large-scale distributed computing paradigm that is driven by economies of

scale, in which a pool of abstracted, virtualized, dynamically, scalable, managed computing power, storage, platforms,

and services are delivered on demand to external customers over the Internet.” Cloud storage offers an on-demand

data out sourcing service model, and is gaining popularity due to its elasticity and low maintenance cost.

Recent advances have given rise to popularity and successes of cloud computing. Cloud storage enables users to

remotely store their data and enjoy the on-demand remote backup service. To provide fault tolerance for cloud storage

recent studies proposed to stripe data across multiple cloud vendors. If cloud suffers from a permanent failure and

losses all its data, we need to repair the lost data with the help of the other surviving clouds to preserve data

redundancy. NCCloud is a proof of concept prototype of a network coding based file system that aims at providing

fault tolerance and reducing the storage capacity when storing files using multiple cloud storage. NCCloud is a proxy

based file system that interconnects multiple storage nodes, which achieves cost effective repair for permanent single-

cloud failure. It is built on top of a network coding-based storage scheme called functional minimum storage

regenerating (FMSR) codes. Compared to traditional optimal erasure codes FMSR codes maintains the same storage

overhead under the same data redundancy level, but uses less repair traffic during the recovery of a single failed node.

NCCloud realizes regenerating codes in practical cloud storage system that does not require any encoding/decoding

intelligence on the cloud storage nodes.

Keywords: Regenerating codes, Network coding, Fault tolerant system, Recapture, Encoding, Implementation, Reparation.

I. INTRODUCTION

With the rapid growth of data production in companies,

the requirement of storage space grows very largely as

well. This growth leads to the emergence of cloud

storage. Cloud storage is a concept which is an extension

and development from cloud computing. This system

collects application software in order to work together

and provide systems of data storage and business access

features through grids or distributed file systems. Cloud

storage is produced by distributed storage technology

and virtualization technology, and it is the latest

development of distributed storage technology. Cloud

storage provides effective solutions for network mass

data storage. Also this system provides on-demand pay

services which reduces not only the threshold for the user

but also the payment. A single-cloud storage provider

encounters the problem such as a single point of failure

[1] and vendor lock-ins [2]. As suggested in [1], [2], [3],

a probable solution is to stripe data across multiple cloud

vendors. However, if cloud suffers from a permanent

failure, than the outsourced data on a failed cloud will

become permanently unavailable. In order to safeguard

our precious data against such failures, it is necessary to

activate repair to maintain data redundancy and fault

tolerance. A repair operation retrieves data from existing

surviving clouds over the network and reconstructs the

lost data in a new cloud. In our definition of repair we

mean to retrieve data only from the other surviving

clouds and reconstruct the data in new storage site.

II. PROBLEM STATEMENTS

Cloud storage provides an on demand remote backup

solution. However, using single cloud storage provider

raises unexpected permanent cloud. When a cloud fails

permanently, will make the hosted data in the failed

cloud no longer accessible, so it must repair and

reconstruct the lost data in a different cloud or a storage

site to maintain the required degree of fault tolerance and

data redundancy. Today’s cloud storage providers

charge users for outbound, so moving an enormous

amount of data across clouds can introduce significant

monetary costs. It is important to reduce the repair traffic

(i.e., the amount of data being transferred over the

network during repair), and hence, the monetary cost due

to data migration. A good erasure code technology can

not only improve the availability and reliability of the

system but can also improve the efficiency of data

access.

III. PROBABLE SOLUTION

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 175

To minimize repair traffic, regenerating codes [4] have

been proposed for storing data redundantly in a

distributed storage system. Regenerating codes are built

on the concept of network coding [5], in the sense that

nodes perform encoding operations and send encoded

data. During repair, each surviving node encodes its

stored data chunks and sends the encoded chunks to a

new node, which then regenerates the lost data.

Regenerating codes require less repair traffic than

traditional erasure codes [6] with the same fault-

tolerance level.

IV. DIFFERENT CODING SCHEME

Implementation based on the RAID 6 Reed-Solomon

[7], as shown in Figure 1. We divide the file into two

native chunks (i.e., A and B) of size M=2 each. We add

two code chunks formed by the linear combinations of

the native chunks. Suppose now that Node 1 is down.

Then, the proxy must download the same number of

chunks as the original file from two other nodes (e.g., B

and A + B from Nodes 2 and 3, respectively). It then

reconstructs and stores the lost chunk A on the new node.

The total storage size is 2M, while the repair traffic is M.

Let consider double fault tolerant implementation of

EMSR code [8], as shown in Figure 2.We divide file into

four chunks and allocate the native and code chunks.

Suppose Node 1 is down. To repair it, each surviving

node sends the XOR summation of the data chunks to the

proxy, which then reconstruct the lost chunks.EMSR

codes the storage size are 2M (same as RAID 6 codes),

while the repair traffic is 0.75M, which is 25% of

saving.EMSR codes leverage the notion of network

coding as the nodes generate encoded chunks during

repair.

The double fault tolerant implementation of FMSR

codes as shown in Figure 3.Here we divide the file into

four native chunks, and construct eight distinct code

chunks formed by different linear combinations of the

native chunks. Each native chunk has the same size M/4

as native chunks. Any two nodes can be used to recover

the original four native chunks. If Node 1 is down, the

proxy collects one code chunks from each surviving

node ,so it downloads three code chunks is size M=4

each. Then the proxy generates two combinations of the

three code chunks and writes in the new node.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 176

V. TECHNIQUES

FMSR maintains double fault tolerance and eliminate the

need to perform encoding operations within storage

nodes during repair, while preserving the benefits of

network coding in reducing repair traffic. Here we will

consider fault tolerant storage based on a type of

maximum distance separable (MDS) codes. Given a file

object of size M, we divide it into equal size native

chunks, which are linearly combined to form code

chunks. When an (n,k) MDS code is used ,the

native/code chunks are then distributed over nodes, each

storing chunks of total size M/k, such that the original

file object may be reconstructed from the chunks

contained in any n-k nodes. We call this fault tolerance

feature the MDS property. One of the extra feature of

FMSR codes is that reconstructing the chunks stored in

the failed node can be achieved by downloading less data

from the whole file.

One key challenge for deploying regenerating codes in

practice is that most existing regenerating codes require

storage nodes to be equipped with computation

capabilities for performing encoding operations during

repair. On the other hand, to make regenerating codes

portable to any cloud storage service, it is desirable to

assume only a thin-cloud interface, where storage nodes

only need to support the standard read/write

functionalities. This motivates us to explore, from an

applied perspective, how to practically we can deploy

regenerating codes in multiple-cloud storage, if only the

thin-cloud interface is assumed.

VI. MOTIVATION FOR FMSR CODE

NCCloud is proxy-based design [9] that interconnects

multiple cloud repositories, as shown in Figure 4. The

proxy serves as an interface between client applications

and the clouds. If a cloud experiences a permanent

failure, the proxy activates the repair operation, as shown

in Figure 5. That is, the proxy reads the essential data

pieces from other surviving clouds, reconstructs [10][11]

new data pieces, and writes these new pieces to a new

cloud. One property of FMSR codes is that we do not

require lost chunks to be exactly reconstructed but

instead in each repair, we regenerate code chunks that

are not necessarily identical to those originally stored in

the failed node, as long as the MDS property [12] holds.

It support a two-phase checking scheme, which ensures

that the code chunks [13] on all nodes always satisfy the

MDS property, and hence data availability, even after

iterative repairs.

VII. RELATED WORK

For implementing FMSR code, for particular file object

specify 3 operations (i) File upload operations with no

failure, (ii) File download operations with node failure,

(iii) Repair operations during node failure

a. File upload: In the upload operations, NCCloud

generates code chunks for the file based on FMSR codes.

The code chunks will be temporarily stored in the local

file system instead of being uploaded to the server

b. File download: In the download operations, the idea

is to treat FMSR code as standard Reed Solomon codes,

and the creating an inverse matrix technique is to decode

the original data.

c. Repair: The repair operations of failed node include

three steps. First file transmission of the existing blocks

from survival nodes to NCCloud, second one generation

for lost blocks of the failed node in NCCloud and third

one transmission of the generated blocks from NCCloud

to the new node [3].If there is more than one failed node,

then apply the repair operation for each failed node one

by one.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 177

VIII. ACKNOWLEDGMENT

No one walks alone and when one is walking on the

journey of life just where I start to thank those who

joined me, walked besides me, and helped me along the

way.Over the years, those that I have met and worked

with have continuously motivated me to write this paper.

So at last, here it is. So, perhaps this paper and its pages

will be seen as “thanks” to the tens of thousands of you

who have helped bringing out this paper in the form what

is today.

Finally, thanks to my mother and to rest of my family for

their patience and support during the long hours of

writing this book and above all there is the one almighty

whose humble children we are. It is his blessings we

cherish and pray for. It is the blessing I wish for you.

My special acknowledgment to all the authors whose

books, journals and paper are referred while writing this

paper.

IX. CONCLUSION

Throughout this paper, we give an overview of NCCloud

proxy based file system that connect multiple storage

nodes that practically address the reliability of today’s

cloud backup storage. NCCloud not only provides fault

tolerance in storage but also minimize the storage

capacity NCCloud implements a practical version of the

FMSR codes, which regenerates a new parity chunks

during repair subject the required degree of data

redundancy.FMSR implementation eliminates the

encoding requirement of storage nodes during repair and

ensuring that new set of code chunks after each round of

repair preserves the required fault tolerance

REFERENCES

[1]. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia

“A View of Cloud Computing,” Comm. the ACM, vol. 53, no. 4, pp.

50-58, 2010.

[2]. H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: A

Case for Cloud Storage Diversity,” Proc. ACM First ACM Symp.

Cloud Computing (SoCC ’10), 2010.

[3]. K.D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-Availability

and Integrity Layer for Cloud Storage,” Proc. 16th ACM Conf.

Computer and Comm. Security (CCS ’09), 2009.

[4]. K. Shum, “Cooperative Regenerating Codes for Distributed

Storage Systems,” Proc. IEEE Int’l Conf. Communications (ICC ’11)

June 2011

[5]. A.G. Dimakis, P.B. Godfrey, Y. Wu, M. Wainwright, and K.

Ramchandran, “Network Coding for Distributed Storage Systems,”

IEEE Trans. Information Theory, vol. 56, no. 9, pp. 4539-4551,Sept.

2010.

[6]. J.S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-

Tolerance in RAID-Like Systems,” Software Practice & Experience

vol. 27, no. 9, pp. 995-1012, Sept. 1997.

[7]. I. Reed and G. Solomon, “Polynomial Codes over Certain Finite

Fields,” J. the Soc. Industrial and Applied Math., vol. 8, no. 2, pp. 300-

304, 1960

[8]. C. Suh and K. Ramchandran, “Exact-Repair MDS Code

Construction Using Interference Alignment,” IEEE Trans. Information

Theory, vol. 57, no. 3, pp. 1425-1442, Mar. 2011.

[9]. Y. Hu, C.-M. Yu, Y.-K. Li, P.P.C. Lee, and J.C.S. Lui, “NCFS: On

the Practicality and Extensibility of a Network-Coding-Based

Distributed File System,” Proc. Int’l Symp. Network Coding (NetCod

’11), 2011

[10]. Y. Hu, P.P.C. Lee, and K.W. Shum, “Analysis and Construction

of Functional Regenerating Codes withUncoded Repair for Distributed

Storage Systems,” Proc. IEEE INFOCOM, Apr. 2013.

[11]. K. Rashmi, N. Shah, and P. Kumar, “Optimal Exact-Regenerating

Codes for Distributed Storage at the MSR and MBR Points via a

Product-Matrix Construction,” IEEE Trans. Information Theory,vol.

57, no. 8, pp. 5227-5239, Aug. 2011.

[12]. B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote Data

Checking for Network Coding-Based Distributed

Storage Systems, “Proc. ACM Workshop Cloud Computing Security

Workshop (CCSW ’10), 2010

[13]. Z. Wang, A. Dimakis, and J. Bruck, “Rebuilding for Array Codes

in Distributed Storage Systems,” Proc. IEEE GlobeCom Workshops,

2010.

[14]. L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li, “A Hybrid

Approach to Failed Disk Recovery Using RAID-6 Codes: Algorithms

and Performance Evaluation,” ACM Trans. Storage, vol. 7, no. 3,

article 11, 2011.

[15]. S. Ni-Na and Z. Hai-Yan, “On ProvidingIntegrity for Dynamic

Data Based on theThird-party Verifier in Cloud Computing,”2011 First

International Conference onInstrumentation Measurement,Computer

Communication and Control, pp. 521–524, Oct. 2011.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 178

Er. Rishabh Anand received his Bachelor’s degree B.E. (Hons) in Electronics and

Communication Engineering from Maharishi Dayanand University, Rohtak in 2006 and M.Tech.

from Veer Bahadur Singh Purvanchal University, Jaunpur in 2014. His areas of interests include

Cloud Computing,Information Security and Cyber Laws, Complier Design, Business Intelligence,

Data Warehousing and Data Mining, Software Project Management, Software Engineering,

Information Storage Management, Digital Image Processing, Distributed Operating System,

Distributed Databases, Wireless and Mobile Computing and Advanced Computer Networks. He

is prolific author of 20 engineering books. He is a currently working in MNC as a Manager. He is

ITILV3 (F) and Prince2 (P) Certified Professional.

